Emotion recognition system using brain and peripheral signals: using correlation dimension to improve the results of EEG

  • Authors:
  • Z. Khalili;M. H. Moradi

  • Affiliations:
  • Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran;Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

  • Venue:
  • IJCNN'09 Proceedings of the 2009 international joint conference on Neural Networks
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposed a multimodal fusion between brain and peripheral signals for emotion detection. The input signals were electroencephalogram, galvanic skin resistance, temperature, blood pressure and respiration, which can reflect the influence of emotion on the central nervous system and autonomic nervous system respectively. The acquisition protocol is based on a subset of pictures which correspond to three specific areas of valance-arousal emotional space (positively excited, negatively excited, and calm). The features extracted from input signals, and to improve the results, correlation dimension as a strong nonlinear feature is used for brain signals. The performance of the Quadratic Discriminant Classifier has been evaluated on different feature sets: peripheral signals, EEG's, and both. In comparison among the results of different feature sets, EEG signals seem to perform better than other physiological signals, and the results confirm the interest of using brain signals as peripherals in emotion assessment. According to the improvement in EEG results compare in each raw of the table, it seems that nonlinear features would lead to better understanding of how emotional activities work.