Action Planning for Directed Model Checking of Petri Nets

  • Authors:
  • Stefan Edelkamp;Shahid Jabbar

  • Affiliations:
  • Computer Science Department, University of Dortmund, Dortmund, Germany;Computer Science Department, University of Dortmund, Dortmund, Germany

  • Venue:
  • Electronic Notes in Theoretical Computer Science (ENTCS)
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Petri nets are fundamental to the analysis of distributed systems especially infinite-state systems. Finding a particular marking corresponding to a property violation in Petri nets can be reduced to exploring a state space induced by the set of reachable markings. Typical exploration(reachability analysis) approaches are undirected and do not take into account any knowledge about the structure of the Petri net. This paper proposes heuristic search for enhanced exploration to accelerate the search. For different needs in the system development process, we distinguish between different sorts of estimates. Treating the firing of a transition as an action applied to a set of predicates induced by the Petri net structure and markings, the reachability analysis can be reduced to finding a plan to an AI planning problem. Having such a reduction broadens the horizons for the application of AI heuristic search planning technology. In this paper we discuss the transformations schemes to encode Petri nets into PDDL. We show a concise encoding of general place-transition nets in Level 2 PDDL2.2, and a specification for bounded place-transition nets in ADL/STRIPS. Initial experiments with an existing planner are presented.