Exploring multi-objective evolution of robot brains in obstacle and maze environments with varying complexities

  • Authors:
  • Song Cheng Ni;Jason Teo

  • Affiliations:
  • Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia;Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia

  • Venue:
  • ACST '08 Proceedings of the Fourth IASTED International Conference on Advances in Computer Science and Technology
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper explores a new approach of using a multi-objective evolutionary algorithm (MOEA) to evolve robot controllers in performing phototaxis task while avoiding obstacles or navigating through a maze in a simulated environment, to overcome problems involving more than one objective, where these objectives usually trade-off among each other and are expressed in different units. Experiments were conducted in six sets within a 10% noise environment with different task environment complexities to investigate whether the MOEA is effective for controller synthesis. A simulated Khepera robot is evolved by a Pareto-frontier Differential Evolution (PDE) algorithm, and learned through a 3-layer feed-forward artificial neural network, attempting to simultaneously fulfill two conflicting objectives of maximizing robot phototaxis behavior while minimizing the neural network's hidden neurons by generating a Pareto optimal set of controllers. Results showed that robot controllers could be successfully developed using the MOEA.