VLSI implementation of an edge-oriented image scaling processor

  • Authors:
  • Pei-Yin Chen;Chih-Yuan Lien;Chi-Pin Lu

  • Affiliations:
  • Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan;Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan;Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan

  • Venue:
  • IEEE Transactions on Very Large Scale Integration (VLSI) Systems
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Image scaling is a very important technique and has been widely used in many image processing applications. In this paper, we present an edge-oriented area-pixel scaling processor. To achieve the goal of low cost, the area-pixel scaling technique is implemented with a low-complexity VLSI architecture in our design. A simple edge catching technique is adopted to preserve the image edge features effectively so as to achieve better image quality. Compared with the previous low-complexity techniques, our method performs better in terms of both quantitative evaluation and visual quality. The seven-stage VLSI architecture of our image scaling processor contains 10.4-K gate counts and yields a processing rate of about 200 MHz by using TSMC 0.18-µm technology.