Bang-bang control class D amplifiers: total harmonic distortion and supply noise

  • Authors:
  • Tong Ge;Joseph S. Chang

  • Affiliations:
  • School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore;School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

  • Venue:
  • IEEE Transactions on Circuits and Systems Part I: Regular Papers
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The total harmonic distortion (THD) and the power supply noise, qualified by the power supply rejection ratio (PSRR) and by the power supply induced intermodulation distortion (PSIMD), are recognized to be potential drawbacks of class D amplifiers. In this paper, analytical expressions for the THD, PSRR, and PS-IMD of the bang-bang control class D amplifier (bang-bang amp) are derived; the bang-bang amp is arguably the most power-efficient class D amp for low-voltage power-critical applications including hearing aids. Based on the derived expressions, the effects of important parameters on the THD, PSRR, and PS-IMD are investigated, providing good insight to the design of the bang-bang amp to meet given design specifications. The analytical analyses are verified by comparing them against HSPICE simulations and hardware measurements. The bang-bang amp is also compared against the prevalent pulsewidth modulation class D amp, and in most cases, the former is shown to possess superior parameters, including lower power dissipation and hardware advantages for low-voltage power-critical applications.