Haptic glove with mr brakes for distributed finger force feedback

  • Authors:
  • Conrad Bullion;Hakan Gurocak

  • Affiliations:
  • -;Mechanical Engineering, School of Engineering and Computer Science, Washington State University, Vancouver, Washington 98686

  • Venue:
  • Presence: Teleoperators and Virtual Environments
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Most existing haptic gloves are complicated user interfaces with remotely located actuators. More compact and simpler haptic gloves would greatly increase our ability to interact with virtual worlds in a more natural way. This research explored the design of a compact force feedback glove using a new finger mechanism and magnetorheological (MR) brakes as passive actuators that oppose human finger motion. The mechanism allowed for a reduction of the number of actuators and application of distributed forces at the bottom surface of user's fingers when an object was grasped in a virtual environment. The MR brakes incorporated a serpentine flux path that led to a small brake with high torque output and the elimination of remote actuation. Force analysis of the mechanism, grasping force experiments, and virtual pick-and-place experiments were done. The glove reduced task completion time by 61% and could support up to 17 N fingertip force along with 11.9 N and 18.7 N middle and proximal digit forces.