DOLFIN: Automated finite element computing

  • Authors:
  • Anders Logg;Garth N. Wells

  • Affiliations:
  • Simula Research Laboratory and University of Oslo, Lysaker, Norway;University of Cambridge, Cambridge, U.K.

  • Venue:
  • ACM Transactions on Mathematical Software (TOMS)
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled, and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This article discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.