Fault-tolerant formations of mobile robots

  • Authors:
  • Ross Mead;Rob Long;Jerry B. Weinberg

  • Affiliations:
  • Computer Science Department, University of Southern California, Los Angeles, CA;Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL;Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL

  • Venue:
  • IROS'09 Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

The goal of a robot formation control architecture is to get a number of robots into a specified form. To be effective and practical, the control architecture must be able to transition a group of robots from an initial swarm to a final formation. It must then be able to handle real-world events that could disrupt the formation, thus, requiring formation repair, obstacle avoidance, and changes in the formation. In previous work, we presented a distributed, reactive cellular automatabased formation control architecture capable of controlling any number of robots in formation at once. In this paper, we examine our architecture with respect to necessary characteristics to handle real-world occurrences. To address issues of formation repair and obstacle avoidance, the control architecture is extended by a distributed auctioning method that allows the robot formation to reconfigure autonomously.