Scenario-driven dynamic analysis of distributed architectures

  • Authors:
  • George Edwards;Sam Malek;Nenad Medvidovic

  • Affiliations:
  • Computer Science Department, University of Southern California, Los Angeles, CA;Computer Science Department, University of Southern California, Los Angeles, CA;Computer Science Department, University of Southern California, Los Angeles, CA

  • Venue:
  • FASE'07 Proceedings of the 10th international conference on Fundamental approaches to software engineering
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Software architecture constitutes a promising approach to the development of large-scale distributed systems, but architecture description languages (ADLs) and their associated architectural analysis techniques suffer from several important shortcomings. This paper presents a novel approach that reconceptualizes ADLs within the model-driven engineering (MDE) paradigm to address their shortcomings. Our approach combines extensible modeling languages based on architectural constructs with a model interpreter framework that enables rapid implementation of customized dynamic analyses at the architectural level. Our approach is demonstrated in XTEAM, a suite of ADL extensions and model transformation engines targeted specifically for highly distributed, resource-constrained, and mobile computing environments. XTEAM model transformations generate system simulations that provide a dynamic, scenario- and risk-driven view of the executing system. This information allows an architect to compare architectural alternatives and weigh trade-offs between multiple design goals, such as system performance, reliability, and resource consumption. XTEAM provides the extensibility to easily accommodate both new modeling language features and new architectural analyses.