A framework for managing uncertainty in self-adaptive software systems

  • Authors:
  • Naeem Esfahani

  • Affiliations:
  • Department of Computer Science, George Mason University, Fairfax, Virginia, USA

  • Venue:
  • ASE '11 Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Self-adaptation endows a software system with the ability to satisfy certain objectives by automatically modifying its behavior. While many promising approaches for the construction of self-adaptive software systems have been developed, the majority of them ignore the uncertainty underlying the adaptation decisions. This has been one of the key inhibitors to widespread adoption of self-adaption techniques in risk-averse real-world settings. In this research abstract I outline my ongoing effort in the development of a framework for managing uncertainty in self-adaptation. This framework employs state-of-the-art mathematical approaches to model and assess uncertainty in adaptation decisions. Preliminary results show that knowledge about uncertainty allows self-adaptive software systems to make better decisions.