Multiparty computation for interval, equality, and comparison without bit-decomposition protocol

  • Authors:
  • Takashi Nishide;Kazuo Ohta

  • Affiliations:
  • Department of Information and Communication Engineering, The University of Electro-Communications, Chofu-shi, Tokyo, Japan and Hitachi Software Engineering Co., Ltd., Tokyo, Japan;Department of Information and Communication Engineering, The University of Electro-Communications, Chofu-shi, Tokyo, Japan

  • Venue:
  • PKC'07 Proceedings of the 10th international conference on Practice and theory in public-key cryptography
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Damgård et al. [11] showed a novel technique to convert a polynomial sharing of secret a into the sharings of the bits of a in constant rounds, which is called the bit-decomposition protocol. The bit-decomposition protocol is a very powerful tool because it enables bitoriented operations even if shared secrets are given as elements in the field. However, the bit-decomposition protocol is relatively expensive. In this paper, we present a simplified bit-decomposition protocol by analyzing the original protocol. Moreover, we construct more efficient protocols for a comparison, interval test and equality test of shared secrets without relying on the bit-decomposition protocol though it seems essential to such bit-oriented operations. The key idea is that we do computation on secret a with c and r where c = a + r, c is a revealed value, and r is a random bitwise-shared secret. The outputs of these protocols are also shared without being revealed. The realized protocols as well as the original protocol are constantround and run with less communication rounds and less data communication than those of [11]. For example, the round complexities are reduced by a factor of approximately 3 to 10.