Multiresolution simulations using particles

  • Authors:
  • Michael Bergdorf;Petros Koumoutsakos

  • Affiliations:
  • Computational Science & Engineering Laboratory, ETH Züürich, Switzerland;Computational Science & Engineering Laboratory, ETH Züürich, Switzerland

  • Venue:
  • VECPAR'06 Proceedings of the 7th international conference on High performance computing for computational science
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present novel multiresolution particle methods with extended dynamic adaptivity in areas where increased resolution is required. In the framework of smooth particle methods we present two adaptive approaches: one based on globally adaptive mappings and one employing a wavelet-based multiresolution analysis to guide the allocation of computational elements. Preliminary results are presented from the application of these methods to problems involving the development of sharp vorticity gradients. The present particle methods are employed in large scale parallel computer architectures demonstrating a high degree of parallelization and enabling state of the art large scale simulations of continuum systems using particles.