Approximating 3D general sweep boundary using depth-buffer

  • Authors:
  • Jaewoo Ahn;Sung Je Hong

  • Affiliations:
  • Dept. of Computer Science & Engineering, POSTECH, Pohang, Gyeongbuk, Korea;Dept. of Computer Science & Engineering, POSTECH, Pohang, Gyeongbuk, Korea

  • Venue:
  • ICCSA'03 Proceedings of the 2003 international conference on Computational science and its applications: PartIII
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a practical technique for approximating the boundary surface of the volume swept out by three-dimensional objects using the depth-buffer. Objects may change their geometries and orientations while sweeping. The sweep volume is approximated as a union of volume elements, which are just rendered inside appropriate viewing frusta of virtual cameras and mapped into screen viewports with depth-buffer. From the depth of each pixel in the screen space of each rendering, the corresponding point in the original world space can be computed. Appropriately connecting these points yields polygonal faces forming polygonal surface patches approximately covering some portion of the sweep volume. Each view frustum adds one or more surface patches in this way, and these presumably overlapped polygonal surface patches approximately enclose the whole sweep volume. These patches may further be processed to yield non-overlapped polygonal surfaces as an approximation to the boundary of the original 3D sweep volume.