Pareto evolution and co-evolution in cognitive game AI synthesis

  • Authors:
  • Yi Jack Yau;Jason Teo;Patricia Anthony

  • Affiliations:
  • School of Engineering and Information Technology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia;School of Engineering and Information Technology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia;School of Engineering and Information Technology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia

  • Venue:
  • EMO'07 Proceedings of the 4th international conference on Evolutionary multi-criterion optimization
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Pareto-based Differential Evolution (PDE) algorithm is one of the current state-of-the-art Multi-objective Evolutionary Algorithms (MOEAs). This paper describes a series of experiments using PDE for evolving artificial neural networks (ANNs) that act as game-playing agents. Three systems are compared: (i) a canonical PDE system, (ii) a co-evolving PDE system (PCDE) with 3 different setups, and (iii) a co-evolving PDE system that uses an archive (PCDE-A) with 3 different setups. The aim of this study is to provide insights on the effects of including co-evolutionary techniques on a well-known MOEA by investigating and comparing these 3 different approaches in evolving intelligent agents as both first and second players in a deterministic zero-sum board game. The results indicate that the canonical PDE system outperformed both co-evolutionary PDE systems as it was able to evolve ANN agents with higher quality game-playing performance as both first and second game players. Hence, this study shows that a canonical MOEA without co-evolution is desirable for the synthesis of cognitive game AI agents.