Bounded-hop energy-efficient broadcast in low-dimensional metrics via coresets

  • Authors:
  • Stefan Funke;Sören Laue

  • Affiliations:
  • Max-Planck-Institut für Informatik, Saarbrücken, Germany;Max-Planck-Institut für Informatik, Saarbrücken, Germany

  • Venue:
  • STACS'07 Proceedings of the 24th annual conference on Theoretical aspects of computer science
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the problem of assigning powers to nodes of a wireless network in the plane such that a message from a source node s reaches all other nodes within a bounded number k of transmissions and the total amount of assigned energy is minimized. By showing the existence of a coreset of size O(1/Ɛ)4k) we are able to (1+Ɛ)-approximate the bounded-hop broadcast problem in time linear in n which is a drastic improvement upon the previously best known algorithm. While actual network deployments often are in a planar setting, the experienced metric for several reasons is typically not exactly of the Euclidean type, but in some sense 'close'. Our algorithm (and others) also work for non-Euclidean metrics provided they exhibit a certain similarity to the Euclidean metric which is known in the literature as bounded doubling dimension.We give a novel characterization of such metrics also pointing out other applications such as space-efficient routing schemes.