Efficient and consistent recursive filtering of images with reflective extension

  • Authors:
  • Ben Appleton;Hugues Talbot

  • Affiliations:
  • Intelligent Real-Time Imaging and Sensing Group, ITEE, The University of Queensland, Brisbane, QLD, Australia;CSIRO Mathematical and Information Sciences, North Ryde, NSW, Australia

  • Venue:
  • Scale Space'03 Proceedings of the 4th international conference on Scale space methods in computer vision
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recursive filters are commonly used in scale space construction for their efficiency and simple implementation. However these filters have an initialisation problem which either produces unusable results near the image boundaries or requires costly approximate solutions such as extending the boundary manually. In this paper, we describe a method for the recursive filtering of reflectively extended images for filters with symmetric denominator. We begin with an analysis of reflective extensions and their effect on nonrecursive filtering operators. Based on the non-recursive case, we derive a formulation of recursive filtering on reflective domains as a linear but time-varying implicit operator. We then give an efficient method for decomposing and solving the linear implicit system. This decomposition needs to be performed only once for each dimension of the image. This yields a filtering which is both stable and consistent with the ideal infinite extension. The filter is efficient, requiring the same order of computation as the standard recursive filtering. We give experimental evidence to verify these claims.