Modular strategies for recursive game graphs

  • Authors:
  • Rajeev Alur;Salvatore La Torre;Parthasarathy Madhusudan

  • Affiliations:
  • University of Pennsylvania;Università degli Studi di Salerno;University of Pennsylvania

  • Venue:
  • TACAS'03 Proceedings of the 9th international conference on Tools and algorithms for the construction and analysis of systems
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we focus on solving games in recursive game graphs that can model the control flow in sequential programs with recursive procedure calls. While such games can be viewed as the pushdown games studied in the literature, the natural notion of winning in our framework requires the strategies to be modular with only local memory; that is, resolution of choices within a module does not depend on the context in which the module is invoked, but only on the history within the current invocation of the module. While reachability in (global) push-down games is known to be EXPTIME-complete, we show reachability in modular games to be NP-complete. We present a fixpoint computation algorithm for solving modular games such that the worst-case number of iterations is exponential in the total number of returned values from the modules. If the strategy within a module does not depend on the global history, but can remember the history of the past invocations of this module, that is, if memory is local but persistent, we show that reachability becomes undecidable.