A formalism for the analysis and design of time and path diversity schemes in wireless sensor networks

  • Authors:
  • Martin Haenggi

  • Affiliations:
  • University of Notre Dame, Notre Dame, IN

  • Venue:
  • IPSN'03 Proceedings of the 2nd international conference on Information processing in sensor networks
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

For Rayleigh fading channels, there exists an interesting similarity between resistive circuits and time and path diversity mechanisms in multihop wireless sensor networks. A resistor-like circuit element, the erristor, representing the normalized noise-to-signal ratio, is introduced. Given an end-to-end packet delivery probability (as a QoS requirement), the nonlinear mapping from link reception probabilities to erristor values greatly simplifies the problems of power allocation and the selection of time and path diversity schemes. Thanks to its simplicity, the formalism that is developed also provides valuable insight into the benefits of diversity mechanisms, which is illustrated by a number of examples.