Partial max-SAT solvers with clause learning

  • Authors:
  • Josep Argelich;Felip Manyà

  • Affiliations:
  • Computer Science Department, Universitat de Lleida, Lleida, Spain;Computer Science Department, Universitat de Lleida, Lleida, Spain

  • Venue:
  • SAT'07 Proceedings of the 10th international conference on Theory and applications of satisfiability testing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe three original exact solvers for Partial Max-SAT: PMS, PMS-hard, and PMS-learning. PMS is a branch and bound solver which incorporates efficient data structures, a dynamic variable selection heuristic, inference rules which exploit the fact that some clauses are hard, and a good quality lower bound based on unit propagation. PMS-hard is built on top of PMS and incorporates clause learning only for hard clauses; this learning is similar to the learning incorporated into modern SAT solvers. PMS-learning is built on top of PMS-hard and incorporates learning on both hard and soft clauses; the learning on soft clauses is quite different from the learning on SAT since it has to use Max-SAT resolution instead of SAT resolution. Finally, we report on the experimental investigation in which we compare the state-of-the-art solvers Toolbar and ChaffBS with PMS, PMS-hard, and PMS-learning. The results obtained provide empirical evidence that Partial Max-SAT is a suitable formalism for representing and solving over-constrained problems, and that the learning techniques we have defined in this paper can give rise to substantial performance improvements.