Adaptation to sensory delays: an evolutionary robotics model of an empirical study

  • Authors:
  • Marieke Rohde;Ezequiel Di Paolo

  • Affiliations:
  • Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, UK;Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, UK

  • Venue:
  • ECAL'07 Proceedings of the 9th European conference on Advances in artificial life
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Evolutionary robotics simulations can serve as a tool to clarify counterintuitive or dynamically complex aspects of sensorimotor behaviour. We present a series of simulations that has been conducted in order to aid the interpretation of ambiguous empirical data on human adaptation to delayed tactile feedback. Agents have been evolved to catch objects falling at different velocities to investigate the behavioural impact that lengthening or shortening of sensory delays has on the strategies evolved. A detailed analysis of the evolved model agents leads to a number of hypotheses for the quantification of the existing data, as well as to ideas for possible further empirical experiments. This study confirms the utility of evolutionary robotics simulation in this kind of interdisciplinary endeavour.