Comparison of echo state networks with simple recurrent networks and variable-length Markov models on symbolic sequences

  • Authors:
  • Michal Čerňansky;Peter Tiňo

  • Affiliations:
  • Faculty of Informatics and Information Technologies, STU Bratislava, Slovakia;School of Computer Science, University of Birmingham, United Kingdom

  • Venue:
  • ICANN'07 Proceedings of the 17th international conference on Artificial neural networks
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

A lot of attention is now being focused on connectionist models known under the name "reservoir computing". The most prominent example of these approaches is a recurrent neural network architecture called an echo state network (ESN). ESNs were successfully applied in more real-valued time series modeling tasks and performed exceptionally well. Also using ESNs for processing symbolic sequences seems to be attractive. In this work we experimentally support the claim that the state space of ESN is organized according to the Markovian architectural bias principles when processing symbolic sequences. We compare performance of ESNs with connectionist models explicitly using Markovian architectural bias property, with variable length Markov models and with recurrent neural networks trained by advanced training algorithms. Moreover we show that the number of reservoir units plays a similar role as the number of contexts in variable length Markov models.