Collaborative location certification for sensor networks

  • Authors:
  • Jie Gao;Radu Sion;Sol Lederer

  • Affiliations:
  • Stony Brook University, Stony Brook, NY;Stony Brook University, Stony Brook, NY;Stony Brook University, Stony Brook, NY

  • Venue:
  • ACM Transactions on Sensor Networks (TOSN)
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Location information is of essential importance in sensor networks deployed for generating location-specific event reports. When such networks operate in hostile environments, it becomes imperative to guarantee the correctness of event location claims. In this article we address the problem of assessing location claims of untrusted (potentially compromised) nodes. The mechanisms introduced here prevent a compromised node from generating illicit event reports for locations other than its own. This is important because by compromising “easy target” sensors (say, sensors on the perimeter of the field that's easier to access), the adversary should not be able to impact data flows associated with other (“premium target”) regions of the network. To achieve this goal, in a process we call location certification, data routed through the network is “tagged” by participating nodes with “belief” ratings, collaboratively assessing the probability that the claimed source location is indeed correct. The effectiveness of our solution relies on the joint knowledge of participating nodes to assess the truthfulness of claimed locations. By collaboratively generating and propagating a set of “belief” ratings with transmitted data and event reports, the network allows authorized parties (e.g., final data sinks) to evaluate a metric of trust for the claimed location of such reports. Belief ratings are derived from a data model of observed past routing activity. The solution is shown to feature a strong ability to detect false location claims and compromised nodes. For example, incorrect claims as small as 2 hops (from the actual location) are detected with over 90% accuracy. Finally, these new location certification mechanisms can be deployed in tandem with traditional secure localization, yet do not require it, and, in a sense, can serve to minimize the need thereof.