Real-time tracking of the left ventricle in 3D echocardiography using a state estimation approach

  • Authors:
  • Fredrik Orderud;Jøger Hansgård;Stein I. Rabben

  • Affiliations:
  • Norwegian University of Science and Technology, Norway;University of Oslo, Norway;GE Vingmed Ultrasound, Norway

  • Venue:
  • MICCAI'07 Proceedings of the 10th international conference on Medical image computing and computer-assisted intervention - Volume Part I
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we present a framework for real-time tracking of deformable contours in volumetric datasets. The framework supports composite deformation models, controlled by parameters for contour shape in addition to global pose. Tracking is performed in a sequential state estimation fashion, using an extended Kalman filter, with measurement processing in information space to effectively predict and update contour deformations in real-time. A deformable B-spline surface coupled with a global pose transform is used to model shape changes of the left ventricle of the heart. Successful tracking of global motion and local shape changes without user intervention is demonstrated on a dataset consisting of 21 3D echocardiography recordings. Real-time tracking using the proposed approach requires a modest CPU load of 13% on a modern computer. The segmented volumes compare to a semi-automatic segmentation tool with 95% limits of agreement in the interval 4.1 ± 24.6 ml (r = 0.92).