Higher order Voronoi diagrams of segments for VLSI critical area extraction

  • Authors:
  • Evanthia Papadopoulou

  • Affiliations:
  • IBM T.J. Watson Research Center, Yorktown Heights, NY and Athens University of Economics and Business, Athens, Greece

  • Venue:
  • ISAAC'07 Proceedings of the 18th international conference on Algorithms and computation
  • Year:
  • 2007

Quantified Score

Hi-index 0.01

Visualization

Abstract

We address the problem of computing critical area for opens in a circuit layout in the presence of multilayer loops and redundant interconnects. The extraction of critical area is a fundamental problem in VLSI yield prediction. We first model the problem as a graph problem and we solve it efficiently by exploiting its geometric nature. We introduce the opens Voronoi diagram of polygonal objects, a generalization of Voronoi diagrams based on concepts of higher order Voronoi diagrams of segments. Higher order Voronoi diagrams of segments had not received much attention in the literature. The approach expands the Voronoi critical area computation paradigm [1,2,3] with the ability to accurately compute critical area for missing material defects even in the presence of loops and redundant interconnects spanning over multiple layers.