On the inherent cost of atomic broadcast and multicast in wide area networks

  • Authors:
  • Nicolas Schiper;Fernando Pedone

  • Affiliations:
  • University of Lugano, Switzerland;University of Lugano, Switzerland

  • Venue:
  • ICDCN'08 Proceedings of the 9th international conference on Distributed computing and networking
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we study the atomic broadcast and multicast problems, two fundamental abstractions for building fault-tolerant systems. As opposed to atomic broadcast, atomic multicast allows messages to be addressed to a subset of the processes in the system, each message possibly being multicast to a different subset. Our study focuses on wide area networks where groups of processes, i.e., processes physically close to each other, are inter-connected through high latency communication links. In this context, we capture the cost of algorithms, denoted latency degree, as the minimum number of inter-group message delays between the broadcasting (multicasting) of a message and its delivery. We present an atomic multicast algorithm with a latency degree of two and show that it is optimal. We then present the first fault-tolerant atomic broadcast algorithm with a latency degree of one. To achieve such a low latency, the algorithm is proactive, i.e., it may take actions even though no messages are broadcast. Nevertheless, it is quiescent: provided that the number of broadcast messages is finite, the algorithm eventually ceases its operation.