Evaluating the effectiveness and efficiency of visual variables for geographic information visualization

  • Authors:
  • Simone Garlandini;Sara Irina Fabrikant

  • Affiliations:
  • Department of Geography, University of Zurich, Zurich, Switzerland;Department of Geography, University of Zurich, Zurich, Switzerland

  • Venue:
  • COSIT'09 Proceedings of the 9th international conference on Spatial information theory
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose an empirical, perception-based evaluation approach for assessing the effectiveness and efficiency of longstanding cartographic design principles applied to 2D map displays. The approach includes bottom-up visual saliency models that are compared with eye-movement data collected in human-subject experiments on map stimuli embedded in the so-called flicker paradigm. The proposed methods are applied to the assessment of four commonly used visual variables for designing 2D maps: size, color value, color hue, and orientation. The empirical results suggest that the visual variable size is the most efficient (fastest) and most effective (accurate) visual variable to detect change under flicker conditions. The visual variable orientation proved to be the least efficient and effective of the tested visual variables. These empirical results shed new light on the implied ranking of the visual variables that have been proposed over 40 years ago. With the presented approach we hope to provide cartographers, GIScientists and visualization designers a systematic assessment method to develop effective and efficient geovisualization displays.