Approximating border length for DNA microarray synthesis

  • Authors:
  • Cindy Y. Li;Prudence W. H. Wong;Qin Xin;Fencol C. C. Yung

  • Affiliations:
  • Department of Computer Science, University of Liverpool, UK;Department of Computer Science, University of Liverpool, UK;Simula Research Lab, Norway;Department of Computer Science, University of Hong Kong, Hong Kong

  • Venue:
  • TAMC'08 Proceedings of the 5th international conference on Theory and applications of models of computation
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the border minimization problem (BMP), which arises in microarray synthesis to place and embed probes in the array. The synthesis is based on a light-directed chemical process in which unintended illumination may contaminate the quality of the experiments. Border length is a measure of the amount of unintended illumination and the objective of BMP is to find a placement and embedding of probes such that the border length is minimized. The problem is believed to be NP-hard. In this paper we show that BMP admits an O(√n log2 n)-approximation, where n is the number of probes to be synthesized. In the case where the placement is given in advance, we show that the problem is O(log2 n)-approximable. We also study a related problem called agreement maximization problem (AMP). In contrast to BMP, we show that AMP admits a constant approximation even when placement is not given in advance.