MRF labeling with a graph-shifts algorithm

  • Authors:
  • Jason J. Corso;Zhuowen Tu;Alan Yuille

  • Affiliations:
  • Computer Science and Engineering, University at Buffalo, State University of New York;Center for Computational Biology, Laboratory of Neuro Imaging, University of California, Los Angeles;Department of Statistics, University of California, Los Angeles

  • Venue:
  • IWCIA'08 Proceedings of the 12th international conference on Combinatorial image analysis
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an adaptation of the recently proposed graph-shifts algorithm for labeling MRF problems from low-level vision. Graph-shifts is an energy minimization algorithm that does labeling by dynamically manipulating, or shifting, the parent-child relationships in a hierarchical decomposition of the image. Graph-shifts was originally proposed for labeling using relatively small label sets (e.g., 9) for problems in high-level vision. In the low-level vision problems we consider, there are much larger label sets (e.g., 256). However, the original graph-shifts algorithm does not scale well with the number of labels; for example, the memory requirement is quadratic in the number of labels. We propose four improvements to the graph-shifts representation and algorithm that make it suitable for doing labeling on these large label sets. We implement and test the algorithm on two low-level vision problems: image restoration and stereo. Our results demonstrate the potential for such a hierarchical energy minimization algorithm on low-level vision problems with large label sets.