Real-time navigation for a mobile robot based on the autonomous behavior agent

  • Authors:
  • Lu Xu;Liguo Zhang;Yangzhou Chen

  • Affiliations:
  • School of Electronic Information & Control Engineering, Beijing University of Technology, Beijing, China;School of Electronic Information & Control Engineering, Beijing University of Technology, Beijing, China;School of Electronic Information & Control Engineering, Beijing University of Technology, Beijing, China

  • Venue:
  • ICCSA'07 Proceedings of the 2007 international conference on Computational science and its applications - Volume Part III
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Autonomous behavior agent includes the robot most behaviors which are designed using hierarchical control method to guarantee their real time performance for real time navigation in response to different situation perceived. The process of robot real time navigation based on the autonomous behavior agent mainly includes three behaviors. The sensing behavior translates the configuration space that the robot and obstacles exist in into 2D Cartesian Grid by Quadtree method. The path planning behavior designs the sub-goals given the global map, start and goal points by improved D* Lite Algorithm. And the obstacle avoidance behaivor replans the path between two adjacent subgoals when the environment changes. It is able to replan faster than planning from scratch since it modifies its previous search results locally and enables robots adapt to the dynamic environment. The simulation results that are reported show that the mobile robot navigation method is efficient and feasible.