A gene regulatory model for the development of primitive nervous systems

  • Authors:
  • Yaochu Jin;Lisa Schramm;Bernhard Sendhoff

  • Affiliations:
  • Honda Research Institute Europe, Offenbach, Germany;Technische Universität Darmstadt, Darmstadt, Germany;Honda Research Institute Europe, Offenbach, Germany

  • Venue:
  • ICONIP'08 Proceedings of the 15th international conference on Advances in neuro-information processing - Volume Part I
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a model for the development of primitive nervous systems in a hydra-like animat controlled by a gene regulatory network. The gene regulatory network consists of structural genes that simulate the main cellular events during neural development at an abstract level, namely, cell division, cell migration, and axon growth, and regulatory genes that control the expression of the structural genes. The developmental model is evolved with an evolutionary algorithm to achieve the correct developmental order. After the genetically controlled neural development is completed, the connectivity and weights of the neural networks are further adapted to allow the animat for performing simple behaviors such as the food catching behavior of a hydra. Our preliminary results suggest that the proposed developmental model is promising for computational simulation of the evolution of neural development for understanding neural organization in biological organisms.