Modeling human behavior for defense against flash-crowd attacks

  • Authors:
  • Georgios Oikonomou;Jelena Mirkovic

  • Affiliations:
  • Computer and Information Sciences, University of Delaware;Information Science Institute, University of Southern California

  • Venue:
  • ICC'09 Proceedings of the 2009 IEEE international conference on Communications
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Flash-crowd attacks are the most vicious form of distributed denial of service (DDoS). They flood the victim with service requests generated from numerous bots. Attack requests are identical in content to those generated by legitimate, human users, and bots send at a low rate to appear non-aggressive -- these features defeat many existing DDoS defenses. We propose defenses against flash-crowd attacks via human behavior modeling, which differentiate DDoS bots from human users. Current approaches to human-vs-bot differentiation, such as graphical puzzles, are insufficient and annoying to humans, whereas our defenses are highly transparent. We model three aspects of human behavior: a) request dynamics, by learning several chosen features of human interaction dynamics, and detecting bots that exhibit higher aggressiveness in one or more of these features, b) request semantics, by learning transitional probabilities of user requests, and detecting bots that generate valid but low-probability sequences, and c) ability to process visual cues, by embedding into server replies human-invisible objects, which cannot be detected by automated analysis, and flagging users that visit them as bots. We evaluate our defenses' performance on a series of web traffic logs, interlaced with synthetically generated attacks, and conclude that they raise the bar for a successful, sustained attack to botnets whose size is larger than the size observed in 1-5% of DDoS attacks today.