MLD2P4: A Package of Parallel Algebraic Multilevel Domain Decomposition Preconditioners in Fortran 95

  • Authors:
  • Pasqua D’Ambra;Daniela Di Serafino;Salvatore Filippone

  • Affiliations:
  • Icar-Cnr, Naples;Second University Of Naples;University Of Rome “Tor Vergata”

  • Venue:
  • ACM Transactions on Mathematical Software (TOMS)
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Domain decomposition ideas have long been an essential tool for the solution of PDEs on parallel computers. In recent years many research efforts have been focused on recursively employing domain decomposition methods to obtain multilevel preconditioners to be used with Krylov solvers. In this context, we developed MLD2P4 (MultiLevel Domain Decomposition Parallel Preconditioners Package based on PSBLAS), a package of parallel multilevel preconditioners that combines additive Schwarz domain decomposition methods with a smoothed aggregation technique to build a hierarchy of coarse-level corrections in an algebraic way. The design of MLD2P4 was guided by objectives such as extensibility, flexibility, performance, portability, and ease of use. They were achieved by following an object-based approach while using the Fortran 95 language, as well as by employing the PSBLAS library as a basic framework. In this article, we present MLD2P4 focusing on its design principles, software architecture, and use.