Pressure routing for underwater sensor networks

  • Authors:
  • Uichin Lee;Paul Wang;Youngtae Noh;Luiz F. M. Vieira;Mario Gerla;Jun-Hong Cui

  • Affiliations:
  • Bell Labs, Alcatel-Lucent;UCLA;UCLA;UFMG;UCLA;University of Connecticut

  • Venue:
  • INFOCOM'10 Proceedings of the 29th conference on Information communications
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

A SEA Swarm (Sensor Equipped Aquatic Swarm) is a sensor cloud that drifts with water currents and enables 4D (space and time) monitoring of local underwater events such as contaminants, marine life and intruders. The swarm is escorted at the surface by drifting sonobuoys that collect the data from underwater sensors via acoustic modems and report it in realtime via radio to a monitoring center. The goal of this study is to design an efficient anycast routing algorithm for reliable underwater sensor event reporting to any one of the surface sonobuoys. Major challenges are the ocean current and the limited resources (bandwidth and energy). In this paper, we address these challenges and propose HydroCast, a hydraulic pressure based anycast routing protocol that exploits the measured pressure levels to route data to surface buoys. The paper makes the following contributions: a novel opportunistic routing mechanism to select the subset of forwarders that maximizes greedy progress yet limiting co-channel interference; and an efficient underwater dead end recovery method that outperforms recently proposed approaches. The proposed routing protocols are validated via extensive simulations.