Intrusion-resilience in mobile unattended WSNs

  • Authors:
  • Roberto Di Pietro;Gabriele Oligeri;Claudio Soriente;Gene Tsudik

  • Affiliations:
  • UNESCO Chair in Data Privacy, Universitat Rovira i Virgili, Tarragona, Spain and Department of Mathematics, Università di Roma Tre, Rome, Italy;ISTI-CNR, Pisa Research Area, Pisa, Italy and Computer Science Department, University of California, Irvine;Universidad Politenica de Madrid, Spain;Computer Science Department, University of California, Irvine

  • Venue:
  • INFOCOM'10 Proceedings of the 29th conference on Information communications
  • Year:
  • 2010

Quantified Score

Hi-index 0.01

Visualization

Abstract

Wireless Sensor Networks (WSNs) are susceptible to a wide range of attacks due to their distributed nature, limited sensor resources and lack of tamper-resistance. Once a sensor is corrupted, the adversary learns all secrets and (even if the sensor is later released) it is very difficult for the sensor to regain security, i.e., to obtain intrusion-resilience. Existing solutions rely on the presence of an on-line trusted third party, such as a sink, or on the availability of secure hardware on sensors. Neither assumption is realistic in large-scale Unattended WSNs (UWSNs), characterized by long periods of disconnected operation and periodic visits by the sink. In such settings, a mobile adversary can gradually corrupt the entire network during the intervals between sink visits. As shown in some recent work, intrusionresilience in UWSNs can be attained (to a degree) via cooperative self-healing techniques. In this paper, we focus on intrusion-resilience in Mobile Unattended Wireless Sensor Networks (µUWSNs) where sensors move according to some mobility model. We argue that sensor mobility motivates a specific type of adversary and defending against it requires new security techniques. Concretely, we propose a cooperative protocol that - by leveraging sensor mobility - allows compromised sensors to recover secure state after compromise. This is obtained with very low overhead and in a fully distributed fashion. We provide a thorough analysis of the proposed protocol and support it by extensive simulation results.