Self-healing in unattended wireless sensor networks

  • Authors:
  • Roberto Di Pietro;Di Ma;Claudio Soriente;Gene Tsudik

  • Affiliations:
  • Università di Roma Tre;University of Michigan-Dearborn;Universidad Politécnica de Madrid;University of California, Irvine

  • Venue:
  • ACM Transactions on Sensor Networks (TOSN)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Wireless sensor networks (WSNs) appeal to a wide range of applications that involve the monitoring of various physical phenomena. However, WSNs are subject to many threats. In particular, lack of pervasive tamper-resistant hardware results in sensors being easy targets for compromise. Having compromised a sensor, the adversary learns all the sensor secrets, allowing it to later encrypt/decrypt or authenticate messages on behalf of that sensor. This threat is particularly relevant in the novel unattended wireless sensor networks (UWSNs) scenario. UWSNs operate without constant supervision by a trusted sink. UWSN's unattended nature and increased exposure to attacks prompts the need for special techniques geared towards regaining security after being compromised. In this article, we investigate cooperative self-healing in UWSNs and propose various techniques to allow unattended sensors to recover security after compromise. Our techniques provide seamless healing rates even against a very agile and powerful adversary. The effectiveness and viability of our proposed techniques are assessed by thorough analysis and supported by simulation results. Finally, we introduce some real-world issues affecting UWSN deployment and provide some solutions for them as well as a few open problems calling for further investigation.