Effective carrier sensing in CSMA networks under cumulative interference

  • Authors:
  • Liqun Fu;Soung Chang Liew;Jianwei Huang

  • Affiliations:
  • Department of Information Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong;Department of Information Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong;Department of Information Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

  • Venue:
  • INFOCOM'10 Proceedings of the 29th conference on Information communications
  • Year:
  • 2010

Quantified Score

Hi-index 0.01

Visualization

Abstract

This paper proposes and investigates the concept of a safe carrier-sensing range that guarantees interference-safe (also termed hidden-node-free) transmissions in CSMA networks under the cumulative interference model. Compared with the safe carrier-sensing range under the commonly assumed but less realistic pairwise interference model, we show that the safe carrier-sensing range required under the cumulative interference model is larger by a constant multiplicative factor. For example, the factor is 1.4 if the SINR requirement is 10dB and the pathloss exponent is 4. We further show that the concept of a safe carrier-sensing range, although amenable to elegant analytical results, is inherently not compatible with the conventional power-threshold carrier-sensing mechanism (e.g., that used in IEEE 802.11). Specifically, the absolute power sensed by a node in the conventional mechanism does not contain enough information for it to derive its distances from other concurrent transmitter nodes. We show that, fortunately, a carrier-sensing mechanism called Incremental-Power Carrier-Sensing (IPCS) can realize the carrier-sensing range concept in a simple way. Instead of monitoring the absolute detected power, the IPCS mechanism monitors every increment in the detected power. This means that IPCS can separate the detected power of every concurrent transmitter, and map the power profile to the required distance information. Our extensive simulation results indicate that IPCS can boost spatial reuse and network throughput by more than 60% relative to the conventional carrier-sensing mechanism. Last but not least, IPCS not only allows us to implement our safe carrier-sensing range, it also ties up a loose end in many other prior theoretical works that implicitly assume the use of a carrier-sensing range (safe or otherwise) without an explicit design to realize it.