Modeling the propagation of Peer-to-Peer worms

  • Authors:
  • Xiang Fan;Yang Xiang

  • Affiliations:
  • School of Management and Information Systems, Central Queensland University, Rockhampton, Queensland 4702, Australia;School of Information Technology, Deakin University, Burwood, Victoria 3125, Australia

  • Venue:
  • Future Generation Computer Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Propagation of Peer-to-Peer (P2P) worms in the Internet is posing a serious challenge to network security research because of P2P worms' increasing complexity and sophistication. Due to the complexity of the problem, no existing work has solved the problem of modeling the propagation of P2P worms, especially when quarantine of peers is enforced. This paper presents a study on modeling the propagation of P2P worms. It also presents our applications of the proposed approach in worm propagation research. Motivated by our aspiration to invent an easy-to-employ instrument for worm propagation research, the proposed approach models the propagation processes of P2P worms by difference equations of a logic matrix, which are essentially discrete-time deterministic propagation models of P2P worms. To the best of our knowledge, we are the first using a logic matrix in network security research in general and worm propagation modeling in particular. Our major contributions in this paper are firstly, we propose a novel logic matrix approach to modeling the propagation of P2P worms under three different conditions; secondly, we find the impacts of two different topologies on a P2P worm's attack performance; thirdly, we find the impacts of the network-related characteristics on a P2P worm's attack performance in structured P2P networks; and fourthly, we find the impacts of the two different quarantine tactics on the propagation characteristics of P2P worms in unstructured P2P networks. The approach's ease of employment, which is demonstrated by its applications in our simulation experiments, makes it an attractive instrument to conduct worm propagation research.