The probability model of peer-to-peer botnet propagation

  • Authors:
  • Yini Wang;Sheng Wen;Wei Zhou;Wanlei Zhou;Yang Xiang

  • Affiliations:
  • Deakin University, Victoria, Australia;Deakin University, Victoria, Australia;Deakin University, Victoria, Australia;Deakin University, Victoria, Australia;Deakin University, Victoria, Australia

  • Venue:
  • ICA3PP'11 Proceedings of the 11th international conference on Algorithms and architectures for parallel processing - Volume Part I
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Active Peer-to-Peer worms are great threat to the network security since they can propagate in automated ways and flood the Internet within a very short duration. Modeling a propagation process can help us to devise effective strategies against a worm's spread. This paper presents a study on modeling a worm's propagation probability in a P2P overlay network and proposes an optimized patch strategy for defenders. Firstly, we present a probability matrix model to construct the propagation of P2P worms. Our model involves three indispensible aspects for propagation: infected state, vulnerability distribution and patch strategy. Based on a fully connected graph, our comprehensive model is highly suited for real world cases like Code Red II. Finally, by inspecting the propagation procedure, we propose four basic tactics for defense of P2P botnets. The rationale is exposed by our simulated experiments and the results show these tactics are of effective and have considerable worth in being applied in real-world networks