Parallel View-Dependent Level-of-Detail Control

  • Authors:
  • Liang Hu;Pedro V. Sander;Hugues Hoppe

  • Affiliations:
  • Hong Kong University of Science and Technology, Hong Kong;Hong Kong University of Science and Technology, Hong Kong;Microsoft Research, Redmond

  • Venue:
  • IEEE Transactions on Visualization and Computer Graphics
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a scheme for view-dependent level-of-detail control that is implemented entirely on programmable graphics hardware. Our scheme selectively refines and coarsens an arbitrary triangle mesh at the granularity of individual vertices to create meshes that are highly adapted to dynamic view parameters. Such fine-grain control has previously been demonstrated using sequential CPU algorithms. However, these algorithms involve pointer-based structures with intricate dependencies that cannot be handled efficiently within the restricted framework of GPU parallelism. We show that by introducing new data structures and dependency rules, one can realize fine-grain progressive mesh updates as a sequence of parallel streaming passes over the mesh elements. A major design challenge is that the GPU processes stream elements in isolation. The mesh update algorithm has time complexity proportional to the selectively refined mesh, and moreover, can be amortized across several frames. The result is a single standard index buffer that can be used directly for rendering. The static data structure is remarkably compact, requiring only 57 percent more memory than an indexed triangle list. We demonstrate real-time exploration of complex models with normals and textures, as well as shadowing and semitransparent surface rendering applications that make direct use of the resulting dynamic index buffer.