Lightning: self-adaptive, energy-conserving, multi-zoned, commodity green cloud storage system

  • Authors:
  • Rini T. Kaushik;Ludmila Cherkasova;Roy Campbell;Klara Nahrstedt

  • Affiliations:
  • University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign

  • Venue:
  • Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The objective of this research is to present an energy-conserving, self-adaptive Commodity Green Cloud Storage, called Lightning. Lightning's File System dynamically configures the servers in the Cloud Storage into logical Hot and Cold Zones. Lightning uses data-classification driven data placement to realize guaranteed, substantially long, periods (several days) of idleness in a significant subset of servers designated as the Cold Zone, in the commodity datacenter backing the Cloud Storage. These servers are then transitioned to inactive power modes and the resulting energy savings substantially reduce the operating costs of the datacenter. Furthermore, the energy savings allow Lightning to improve the data access performance by incorporation of high-performance, though high-cost Solid State Drives (SSD) without exceeding the total cost of ownership (TCO) of the datacenter. Analytical cost model analysis of Lightning suggests savings in the upwards of $24 million in the TCO of a 20,000 server datacenter. The simulation results show that Lightning can achieve 46% energy costs reduction even when the datacenter is at 80% capacity utilization.