Energy-efficient route optimization for adaptive MPSK-based wireless sensor networks

  • Authors:
  • Changmian Wang;Liuguo Yin;Geir E. Øien

  • Affiliations:
  • Department of Electronics and Telecommunications, Norwegian University of Science and Technology, Trondheim, Norway;School of Aerospace, TsingHua University, Beijing, China;Department of Electronics and Telecommunications, Norwegian University of Science and Technology, Trondheim, Norway

  • Venue:
  • EURASIP Journal on Wireless Communications and Networking
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study a certain route configuration problem via optimization theory. We consider the optimal bit error rate (BER) and transmission rate allocations on each hop, subject to overall BER and delay constraints for a designated route. The pivot of the problem lies in the delay constraint, which divides the problem into two cases--the loose and the tight delay case. In the former, analytical solutions are obtained by applying the Karush-Kuhn-Tucker (KKT) theorem. Specifically, we discover in this case that for a given target BER, the optimum solutions are only related to the hop lengths in the route. When the delay constraint is tight, a mapping can be used to reduce the dimension of the problem by a factor of two; a numerical optimization algorithm has to be used to find the optimum. Simulation results show that by optimally configuring a chosen route, substantial energy savings could be obtained, especially under tight delay constraints. Simulation also reveals that a performance limit is reached as the number of hops increases. A parameter determining this limit is defined, and physical explanations are given accordingly.