Path planning for highly redundant manipulators using a continuous model

  • Authors:
  • Akira Hayashi;Benjamin J. Kuipers

  • Affiliations:
  • Department of Computer Sciences, The University of Texas at Austin, Austin, TX;Department of Computer Sciences, The University of Texas at Austin, Austin, TX

  • Venue:
  • AAAI'91 Proceedings of the ninth National conference on Artificial intelligence - Volume 2
  • Year:
  • 1991

Quantified Score

Hi-index 0.00

Visualization

Abstract

There is a need for highly redundant manipulators to work in complex, cluttered environments. Our goal is to plan paths for such manipulators efficiently. The path planning problem has been shown to be PSP ACE-complete in terms of the number of degrees of freedom (DOF) of the manipulator. We present a method which overcomes the complexity with a strong heuristic: utilizing redundancy by means of a continuous manipulator model. The continuous model allows us to change the complexity of the problem from a function of both the DOF of the manipulator (believed to be exponential) and the complexity of the environment (polynomial), to a polynomial function of the complexity of the environment only.