Scalable shortest paths browsing on land surface

  • Authors:
  • Songhua Xing;Cyrus Shahabi

  • Affiliations:
  • University of Southern California, Los Angeles, CA;University of Southern California, Los Angeles, CA

  • Venue:
  • Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The growing popularity of online Earth visualization tools and geo-realistic games and the availability of high resolution terrain data have motivated a new class of queries to the interests of the GIS and spatial database community: spatial queries (e.g., kNN) over land surface. However, the fundamental challenges that restrict the applicability of these studies to real world applications are the prohibitive time complexity and storage overhead to precompute the shortest surface paths. In this paper, for the first time, we propose an approximate solution to address both challenges and allow browsing the shortest surface paths in O(log N + √N) time, where N is the size of the terrain. With this method, the time and space requirements for an exhaustive all-pair pre-computation have been reduced from O(N3) to O(N1.5) and O(N) respectively. The substantial savings in both time and storage are gained by taking advantage of the fact that the O(N2) surface paths only deviate from approximate straight lines at O(√N) points, termed rough vertices. As a result, we propose a linear time shortest surface path computation algorithm between two arbitrary vertices and a linear size storage structure, which captures all the shortest surface paths between any pair of vertices. We experimentally verified the applicability and scalability of the proposed methods with large real world and synthetic data sets and showed that accuracy higher than 97% can be obtained in most cases.