A Lagrangian approach for storage of spatio-temporal network datasets: a summary of results

  • Authors:
  • Michael R. Evans;KwangSoo Yang;James M. Kang;Shashi Shekhar

  • Affiliations:
  • University of Minnesota;University of Minnesota;University of Minnesota;University of Minnesota

  • Venue:
  • Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.01

Visualization

Abstract

Given a set of operators and a spatio-temporal network, the goal of the Storing Spatio-Temporal Networks (SSTN) problem is to produce an efficient data storage method that minimizes disk I/O access costs. Storing and accessing spatio-temporal networks is increasingly important in many societal applications such as transportation management and emergency planning. This problem is challenging due to strains on traditional adjacency list representations when storing temporal attribute values from the sizable increase in length of the time-series. Current approaches for the SSTN problem focus on orthogonal partitioning (e.g., snapshot, longitudinal, etc.), which may produce excessive I/O costs when performing traversal-based spatio-temporal network queries (e.g., route evaluation, arrival time prediction, etc) due to the desired nodes not being allocated to a common page. We propose a Lagrangian-Connectivity Partitioning (LCP) technique to efficiently store and access spatio-temporal networks that utilizes the interaction between nodes and edges in a network. Experimental evaluation using the Minneapolis, MN road network showed that LCP outperforms traditional orthogonal approaches.