Pedestrian detection and tracking in an urban environment using a multilayer laser scanner

  • Authors:
  • Samuel Gidel;Paul Checchin;Christophe Blanc;Thierry Chateau;Laurent Trassoudaine

  • Affiliations:
  • Laboratoire des Sciences et Materiaux pour l'Electronique, et d' Automatique, UMR, Blaise Pascal University, Centre National de la Recherche Scientifique, Aubière Cedex, France;Laboratoire des Sciences et Materiaux pour l'Electronique, et d' Automatique, UMR, Blaise Pascal University, Centre National de la Recherche Scientifique, Aubière Cedex, France;Laboratoire des Sciences et Materiaux pour l'Electronique, et d' Automatique, UMR, Blaise Pascal University, Centre National de la Recherche Scientifique, Aubière Cedex, France;Laboratoire des Sciences et Materiaux pour l'Electronique, et d' Automatique, UMR, Blaise Pascal University, Centre National de la Recherche Scientifique, Aubière Cedex, France;Laboratoire des Sciences et Materiaux pour l'Electronique, et d' Automatique, UMR, Blaise Pascal University, Centre National de la Recherche Scientifique, Aubière Cedex, France

  • Venue:
  • IEEE Transactions on Intelligent Transportation Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Pedestrians are the most vulnerable participants in urban traffic. The first step toward protecting pedestrians is to reliably detect them in a real-time framework. In this paper, a new approach is presented for pedestrian detection in urban traffic conditions using a multilayer laser sensor mounted onboard a vehicle. This sensor, which is placed on the front of a vehicle, collects information about the distance distributed according to four planes. Like a vehicle, a pedestrian constitutes, in the vehicle environment, an obstacle that must be detected, and located and then identified and tracked if necessary. To improve the robustness of pedestrian detection using a single laser sensor, a detection system based on the fusion of information located in the four laser planes is proposed. The method uses a nonparametric kernel-density-based estimation of pedestrian position of each laser plane. The resulting pedestrian estimations are then sent to a decentralized fusion according to the four planes. Temporal filtering of each object is finally achieved within a stochastic recursive Bayesian framework (particle filter), allowing a closer observation of pedestrian random movement dynamics. Many experimental results are given and validate the relevance of our pedestrian-detection algorithm with regard to a method using only a single-row laser-range scanner.