Ultra-high throughput string matching for deep packet inspection

  • Authors:
  • Alan Kennedy;Xiaojun Wang;Zhen Liu;Bin Liu

  • Affiliations:
  • Dublin City University, Dublin, Ireland;Dublin City University, Dublin, Ireland;Dublin City University, Dublin, Ireland;Tsinghua University, Beijing, P.R. China

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Deep Packet Inspection (DPI) involves searching a packet's header and payload against thousands of rules to detect possible attacks. The increase in Internet usage and growing number of attacks which must be searched for has meant hardware acceleration has become essential in the prevention of DPI becoming a bottleneck to a network if used on an edge or core router. In this paper we present a new multi-pattern matching algorithm which can search for the fixed strings contained within these rules at a guaranteed rate of one character per cycle independent of the number of strings or their length. Our algorithm is based on the Aho-Corasick string matching algorithm with our modifications resulting in a memory reduction of over 98% on the strings tested from the Snort ruleset. This allows the search structures needed for matching thousands of strings to be small enough to fit in the on-chip memory of an FPGA. Combined with a simple architecture for hardware, this leads to high throughput and low power consumption. Our hardware implementation uses multiple string matching engines working in parallel to search through packets. It can achieve a throughput of over 40 Gbps (OC-768) when implemented on a Stratix 3 FPGA and over 10 Gbps (OC-192) when implemented on the lower power Cyclone 3 FPGA.