A reconfigurable cache memory with heterogeneous banks

  • Authors:
  • Domingo Benitez;Juan C. Moure;Dolores Rexachs;Emilio Luque

  • Affiliations:
  • Univ. of Las Palmas de G. C., Las Palmas de Gran Canaria, Spain;University Autónoma of Barcelona, Barcelona, Spain;University Autónoma of Barcelona, Barcelona, Spain;University Autónoma of Barcelona, Barcelona, Spain

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

The optimal size of a large on-chip cache can be different for different programs: at some point, the reduction of cache misses achieved when increasing cache size hits diminishing returns, while the higher cache latency hurts performance. This paper presents the Amorphous Cache (AC), a reconfigurable L2 on-chip cache aimed at improving performance as well as reducing energy consumption. AC is composed of heterogeneous sub-caches as opposed to common caches using homogenous subcaches. The sub-caches are turned off depending on the application workload to conserve power and minimize latencies. A novel reconfiguration algorithm based on Basic Block Vectors is proposed to recognize program phases, and a learning mechanism is used to select the appropriate cache configuration for each program phase. We compare our reconfigurable cache with existing proposals of adaptive and non-adaptive caches. Our results show that the combination of AC and the novel reconfiguration algorithm provides the best power consumption and performance. For example, on average, it reduces the cache access latency by 55.8%, the cache dynamic energy by 46.5%, and the cache leakage power by 49.3% with respect to a non-adaptive cache.