SHRINK: a structural clustering algorithm for detecting hierarchical communities in networks

  • Authors:
  • Jianbin Huang;Heli Sun;Jiawei Han;Hongbo Deng;Yizhou Sun;Yaguang Liu

  • Affiliations:
  • Xidian University, Xi'an, China;Xi'an Jiaotong University, Xi'an, China;University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA;Xidian University, Xi'an, China

  • Venue:
  • CIKM '10 Proceedings of the 19th ACM international conference on Information and knowledge management
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Community detection is an important task for mining the structure and function of complex networks. Generally, there are several different kinds of nodes in a network which are cluster nodes densely connected within communities, as well as some special nodes like hubs bridging multiple communities and outliers marginally connected with a community. In addition, it has been shown that there is a hierarchical structure in complex networks with communities embedded within other communities. Therefore, a good algorithm is desirable to be able to not only detect hierarchical communities, but also identify hubs and outliers. In this paper, we propose a parameter-free hierarchical network clustering algorithm SHRINK by combining the advantages of density-based clustering and modularity optimization methods. Based on the structural connectivity information, the proposed algorithm can effectively reveal the embedded hierarchical community structure with multiresolution in large-scale weighted undirected networks, and identify hubs and outliers as well. Moreover, it overcomes the sensitive threshold problem of density-based clustering algorithms and the resolution limit possessed by other modularity-based methods. To illustrate our methodology, we conduct experiments with both real-world and synthetic datasets for community detection, and compare with many other baseline methods. Experimental results demonstrate that SHRINK achieves the best performance with consistent improvements.