Convergence, stability, and discrete approximation of Laplace spectra

  • Authors:
  • Tamal K. Dey;Pawas Ranjan;Yusu Wang

  • Affiliations:
  • The Ohio State University, Columbus, OH;The Ohio State University, Columbus, OH;The Ohio State University, Columbus, OH

  • Venue:
  • SODA '10 Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Spectral methods have been widely used in a broad range of applications fields. One important object involved in such methods is the Laplace-Beltrami operator of a manifold. Indeed, a variety of work in graphics and geometric optimization uses the eigen-structures (i.e, the eigenvalues and eigen-functions) of the Laplace operator. Applications include mesh smoothing, compression, editing, shape segmentation, matching, parameterization, and so on. While the Laplace operator is defined (mathematically) for a smooth domain, these applications often approximate a smooth manifold by a discrete mesh. The spectral structure of the manifold Laplacian is estimated from some discrete Laplace operator constructed from this mesh. In this paper, we study the important question of how well the spectrum computed from the discrete mesh approximates the true spectrum of the manifold Laplacian. We exploit a recent result on mesh Laplacian and provide the first convergence result to relate the spectrum constructed from a general mesh (approximating an m-manifold embedded in IRd) with the true spectrum. We also study how stable these eigenvalues and their discrete approximations are when the underlying manifold is perturbed, and provide explicit bounds for the Laplacian spectra of two "close" manifolds, as well as a convergence result for their discrete approximations. Finally, we present various experimental results to demonstrate that these discrete spectra are both accurate and robust in practice.