Minimum edge interference in wireless sensor networks

  • Authors:
  • Trac N. Nguyen;Nhat X. Lam;D. T. Huynh;Jason Bolla

  • Affiliations:
  • University of Texas at Dallas, Richardson, TX;University of Texas at Dallas, Richardson, TX;University of Texas at Dallas, Richardson, TX;University of Texas at Dallas, Richardson, TX

  • Venue:
  • WASA'10 Proceedings of the 5th international conference on Wireless algorithms, systems, and applications
  • Year:
  • 2010

Quantified Score

Hi-index 0.01

Visualization

Abstract

The approach of using topology control to reduce interference in wireless sensor networks has attracted attention of many researchers. There are several definitions of interference in the literature. In a wireless sensor network, the interference at a node may be caused by an edge that is transmitting data, or it occurs because the node itself is within the transmission range of another. The interference load of an edge is the number of nodes that are in the disks defined by the end nodes of this edge with a radius which is either the Euclidean distance or the power level of the end nodes. In this paper we show that the problem of assigning power level to a set of nodes in the plane to yield a connected geometric graph whose edges have bounded interference is NP-complete under both edge interference definitions. We also study the performance of a number of heuristics through simulation.